

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Writing Architecture Files

wav2letter++ provides a simple way to create fl::Sequential module for the acoustic model from text files. These are specified using the gflags -arch and -archdir.

Example architecture file:

Comments like this are ignored
V -1 1 NFEAT 0
C1 NFEAT 300 48 2 39
R
C1 300 300 32 1
R
RO 2 0 3 1
L 300 NLABEL

While parsing, we ignore lines stating with # as comments. We also replace the following tokens NFEAT = input feature size (e.g. number of frequency bins), NLABEL = output size (e.g. number of grapheme tokens)

The first token in each line represents a specific flashlight module followed by the specification of its parameters.

Here, we describe how to specify different flashlight modules in the architecture files.

fl::Conv2D C2 [inputChannels] [outputChannels] [xFilterSz] [yFilterSz] [xStride] [yStride] [xPadding] [yPadding]

(Use padding = -1 for fl::PaddingMode::SAME)

fl::Linear L [inputChannels] [outputChannels]

fl::BatchNorm BN [firstDim] [secondDim <OPTIONAL>] [thirdDim <OPTIONAL>]

fl::LayerNorm LN [firstDim] [secondDim <OPTIONAL>] [thirdDim <OPTIONAL>]

fl::WeightNorm WN [normDim] [Layer]

fl::Dropout DO [dropProb]

fl::Pool2D

	Average : A [xFilterSz] [yFilterSz] [xStride] [yStride] [xPadding] [yPadding]

	Max : M [xFilterSz] [yFilterSz] [xStride] [yStride] [xPadding] [yPadding]

(Use padding = -1 for fl::PaddingMode::SAME)

fl::View V [firstDim] [secondDim] [thirdDim] [fourthDim]

(Use -1 to infer dimension, only one param can be a -1. Use 0 to use the corresponding input dimension.)

fl::Reorder RO [firstDim] [secondDim] [thirdDim] [fourthDim]

fl::ELU ELU

fl::ReLU R

fl::PReLU PR [numElements <OPTIONAL>] [initValue <OPTIONAL>]

fl::Log LG

fl::HardTanh HT

fl::Tanh T

fl::GatedLinearUnit GLU [sliceDim]

fl::LogSoftmax LSM [normDim]

fl::RNN

	RNN : RNN [inputSize] [outputSize] [numLayers] [isBidirectional] [dropProb]

	GRU : GRU [inputSize] [outputSize] [numLayers] [isBidirectional] [dropProb]

	LSTM : LSTM [inputSize] [outputSize] [numLayers] [isBidirectional] [dropProb]

Decoder

[image: Diagram]

There are two components in decoding — test and decode.

	The test binary is used to compute basic statistics like letter error rate
(LER) and word error rate (WER) given an acoustic model using the greedy best
path without the constraint of a language model or lexicon. It will also
generate an Emission Set including the emission matrix as well as other
target-related information for each sample, so that the Emission Set can be
fed into the decoder directly to generate transcripts without calling the
models forward function again.

	The decode binary attempts to find the smallest WER using a beam search
decoder and a language model. It can take as input either an emission set
generated from the test binary, which enables running hyper-parameter search
in parallel, or an acoustic model to generate emissions at runtime, which may
be more convenient when the dataset being decoded is small and a
hyper-parameter sweep is not required.

Aside from the dataset and acoustic model, two dictionaries must be input to
both binaries.

	Token dictionary: The same dictionary used to train the acoustic model and
the order of the tokens should also be identical. Each line contains a unique
token.

	Lexicon: The set of allowed words and their possible spellings used by the
decoder. Each line is a word and spelling pair that are separated by a tab.
The spelling is represented by a space-separated sequence of tokens. An
example entry could be apple a p p l e. Note that the same word may have
multiple spellings; these should be on separate lines.

Running the Test

The dictionaries are specified through the flags tokens and lexicon. We
also have to set the flags am and emission_dir to the path of the acoustic
model and the directory where we want to save the emission set. The flags
datadir and test are combined to specify the datasets we want to run an
experiment on. Note that we can test on more than 1 dataset, they must be in
the same datadir and are specified as a comma-sperated list to test.

<test_cpp_binary> \
-tokens <path/to/tokens.txt> \
-lexicon <path/to/words.txt> \
-am <path/to/acoustic_model.bin> \
-emission_dir <path/to/emission_dir/> \
-datadir <path/to/dataset/> \
-test <path/to/testset/> \
-maxload -1 \
-show

Running the Decode

The decoder can take either an acoustic model or an emission set as input but
not both. E.g. only one of the flags am and emission_dir can be set. In
general, flags across Decode and Test have similar functions. All the
hyper-parameters are self-documented and can be set accordingly. The flag
sclite specifies the path to save the logs, including the stdout log and
the hypotheses and references in sclite format (trn [http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/infmts.htm#trn_fmt_name_0]).

Using acoustic model

<decode_cpp_binary> \
-tokens <path/to/tokens.txt> \
-lexicon <path/to/words.txt> \
-am <path/to/acoustic_model.bin> \
-lm <path/to/language_model.bin> \
-datadir <path/to/dataset/> \
-test <path/to/testset/> \
-sclite <path/to/save/logs/> \
-lmweight 4 \
-wordscore 2.2 \
-maxload 50 \
-beamsize 2500 \
-beamscore 100 \
-silweight -1 \
-nthread_decoder 8 \
-smearing max \
-show \
-showletters

Using emission set

<decode_cpp_binary> \
-tokens <path/to/tokens.txt> \
-lexicon <path/to/words.txt> \
-emission_dir <path/to/emission_dir/> \
-lm <path/to/language_model.bin> \
-datadir <path/to/dataset/> \
-test <path/to/testset/> \
-sclite <path/to/save/logs/> \
-lmweight 4 \
-wordscore 2.2 \
-maxload 50 \
-beamsize 2500 \
-beamscore 100 \
-silweight -1 \
-nthread_decoder 8 \
-smearing max \
-show \
-showletters

Building wav2letter++

Build Requirements

	A C++ compiler with good C++ 11 support (e.g. g++ >= 4.8)

	cmake [https://cmake.org/] — version 3.5.1 or later, make

Dependencies

	flashlight [https://github.com/facebookresearch/flashlight/] is required.
flashlight must be built with distributed training enabled.

	libsndfile [https://github.com/erikd/libsndfile] is required for loading
audio. If using wav2letter++ with flac files, libsndfile
must be built [https://github.com/erikd/libsndfile#requirements] with Ogg,
Vorbis and FLAC libraries.

	Intel’s Math Kernel Library [https://software.intel.com/en-us/mkl] is
required for featurization.

	FFTW [http://www.fftw.org/] is required for featurization.

	KenLM [https://github.com/kpu/kenlm] is required for the decoder. One of
LZMA, BZip2, or Z is required for LM compression with KenLM.

	glags [https://github.com/gflags/gflags] is required.

	glog [https://github.com/google/glog] is required.

	Google Test [https://github.com/google/googletest] >= 1.8.0 is required if
building tests.

Optional Dependencies

	flashlight requires CUDA >= 9.2; if building wav2letter++ with the CUDA
criterion backend, CUDA >= 9.2 is required. Using CUDA 9.2 [https://developer.nvidia.com/cuda-92-download-archive] is recommended.

	If building with the CPU criteiron backend, wav2letter++ will try to
compile with OpenMP [https://www.openmp.org/], for better performance.

Build Options

Options	Configuration	Default Value
——————-	——————-	—————
CRITERION_BACKEND	CUDA, CPU	CUDA
BUILD_TESTS	ON, OFF	ON
CMAKE_BUILD_TYPE	CMake build types	Debug

General Build Instructions

First, clone the repository:

git clone --recursive https://github.com/facebookresearch/wav2letter.git

and follow the build instructions for your specific OS.

There is no install procedure currently supported for wav2letter++. Building
produces three binaries in the build directory:

	Train: given a dataset of input audio and corresponding transcriptions in
sub-word units (graphemes, phonemes, etc), trains the acoustic model.

	Test: performs inference on a given dataset with an acoustic model.

	Decode: given an acoustic model/pre-computed network emissions and a
language model, computes the most likely sequence of words for a given
dataset.

Building on Linux

wav2letter++ has been tested on Ubuntu 16.04 and CentOS 7.5.

Building on Linux is simple. Once you’ve downloaded wav2letter++ and built and
installed the required dependencies:

in your wav2letter++ directory
mkdir -p build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release -DCRITERION_BACKEND=[backend]
make -j4 # (or any number of threads)

Train

At its simplest, training a model can be invoked with

<train_cpp_binary> train --flagsfile=<path_to_flags>

The flags to the train binary can be passed in a flagfile (see this example
flags file) or as flags on the
command line:

<train_cpp_binary> [train|continue|fork] \
--datadir <path/to/data/> \
--tokensdir <path/to/tokens/file/> \
--archdir <path/to/architecture/files/> \
--rundir <path/to/save/models/> \
--arch <name_of_architecture.arch> \
--train <train/datasets/> \
--valid <validation/datasets> \
--lr=0.0001 \
--lrcrit=0.0001

Modes

Training supports three modes:

	train : Train a model from scratch on the given training data.

	continue : Continue training a saved model. This can be used for example to
fine-tune with a smaller learning rate. The continue option makes a best
effort to resume training from the most recent checkpoint of a given model as
if there were no interruptions.

	fork : Create and train a new model from a saved model. This can be used
for example to adapt a saved model to a new dataset.

Flags

We give a short description of some of the more important flags here. A
complete list of the flag definitions and short descriptions of their meaning
can be found here.

The datadir flag is the base path to where all the train and valid
dataset directories live. Every train path will be prefixed by datadir.
Multiple datasets can be passed to train and valid as a comma-separated
list.

Similarly, the archdir and tokensdir are (optional) base paths to where the
arch and token files live. For example, the complete architecture file path
will be <archdir>/<arch>.

The rundir flag is the base directory where the model will be saved and the
runname is the subdirectory that will be created to save the model and
training logs. If runname is unspecified a directory name based on the date,
time and user will be created.

Most of the training hyperparameter flags have default values. Many of these
you will not need to change. Some of the more important ones include:

- `lr` : The learning rate for the model parameters.
- `lrcrit` : The learning rate for the criterion parameters.
- `criterion` : Which criterion (e.g. loss function) to use. Options include `ctc`,
 `asg` or `seq2seq`.
- `batchsize` : The size of the minibatch to use per GPU.
- `maxgradnorm` : Clip the norm of gradient of the model and criterion parameters
 to this value. NB the norm is computed and clipped on the aggregated model
 and criterion parameters.

Distributed

wav2letter++ supports distributed training on multiple GPUs out of the box. To
run on multiple GPUs set pass the flag -enable_distributed true and run with
MPI:

mpirun -n 8 <train_cpp_binary> [train|continue|fork] \
-enable_distributed true \
<... other flags ..>

The above command will run data parallel training with 8 processes (e.g. on 8
GPUs).

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/decoder_sketch.png
Acoustic
Model

Test.cpp

\
>

Emission Set

_static/comment-bright.png

